博客
关于我
强化学习(2020智源大会)Topic推荐-AMiner
阅读量:130 次
发布时间:2019-02-27

本文共 384 字,大约阅读时间需要 1 分钟。

清华大学计算机系携手完成了一个基于知识产权的学术科技平台研发工作,平台内集成了超过23亿篇学术论文和136亿名学者的科技图谱,为用户提供专业化的学术情报服务。该平台自2006年上线以来,已吸引来自全球220个国家和地区的超过1000万独立IP访问量,数据下载量突破23万次,年度访问量持续保持在1100万次以上,成为学术搜索和社会网络挖掘研究的重要数据源和实验平台。

本平台还特别推出了专注于强化学习领域的论文集,汇集了第二次智源大会-强化学习主讲嘉宾及其他知名学者的核心论文。该论文集涵盖了50篇高质量文章,其中密歇根大学叶杰平教授在该领域独占性发表了15篇论文,成为该领域的顶尖研究者。强化学习作为机器学习的重要分支,致力于通过环境反馈优化决策过程,平台为研究者提供了丰富的资源和数据支持。

如果您对强化学习领域的前沿研究感兴趣,可以立即访问相关页面了解更多详情。

转载地址:http://gqwd.baihongyu.com/

你可能感兴趣的文章
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NMF(非负矩阵分解)
查看>>
nmon_x86_64_centos7工具如何使用
查看>>
NN&DL4.1 Deep L-layer neural network简介
查看>>
NN&DL4.3 Getting your matrix dimensions right
查看>>
NN&DL4.8 What does this have to do with the brain?
查看>>
nnU-Net 终极指南
查看>>
No 'Access-Control-Allow-Origin' header is present on the requested resource.
查看>>
NO 157 去掉禅道访问地址中的zentao
查看>>
no available service ‘default‘ found, please make sure registry config corre seata
查看>>